T1498.002: Reflection Amplification
View on MITRE ATT&CK | T1498.002 |
---|---|
Tactic(s) | Impact |
Associated CAPEC Patterns | Amplification (CAPEC-490) |
Data from MITRE ATT&CK®:
Adversaries may attempt to cause a denial of service (DoS) by reflecting a high-volume of network traffic to a target. This type of Network DoS takes advantage of a third-party server intermediary that hosts and will respond to a given spoofed source IP address. This third-party server is commonly termed a reflector. An adversary accomplishes a reflection attack by sending packets to reflectors with the spoofed address of the victim. Similar to Direct Network Floods, more than one system may be used to conduct the attack, or a botnet may be used. Likewise, one or more reflectors may be used to focus traffic on the target.(Citation: Cloudflare ReflectionDoS May 2017) This Network DoS attack may also reduce the availability and functionality of the targeted system(s) and network.
Reflection attacks often take advantage of protocols with larger responses than requests in order to amplify their traffic, commonly known as a Reflection Amplification attack. Adversaries may be able to generate an increase in volume of attack traffic that is several orders of magnitude greater than the requests sent to the amplifiers. The extent of this increase will depending upon many variables, such as the protocol in question, the technique used, and the amplifying servers that actually produce the amplification in attack volume. Two prominent protocols that have enabled Reflection Amplification Floods are DNS(Citation: Cloudflare DNSamplficationDoS) and NTP(Citation: Cloudflare NTPamplifciationDoS), though the use of several others in the wild have been documented.(Citation: Arbor AnnualDoSreport Jan 2018) In particular, the memcache protocol showed itself to be a powerful protocol, with amplification sizes up to 51,200 times the requesting packet.(Citation: Cloudflare Memcrashed Feb 2018)
© 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.
Cyber Threat Graph Context
Explore how this ATT&CK Technique relates to the wider threat graph
Mitigations for this technique
MITRE ATT&CK Mitigations
How to detect this technique
MITRE ATT&CK Data Components
Host Status (Sensor Health)
Logging, messaging, and other artifacts highlighting the health of host sensors (ex: metrics, errors, and/or exceptions from logging applications)Network Traffic Flow (Network Traffic)
Summarized network packet data, with metrics, such as protocol headers and volume (ex: Netflow or Zeek http.log)SP800-53 Controls
See which controls can help protect against this MITRE ATT&CK technique. This is based on mappings to associated SP800-53 controls produced by the MITRE Engenuity Center for Threat-Informed Defense.