OS Command Injection (CAPEC-88)
In this type of an attack, an adversary injects operating system commands into existing application functions. An application that uses untrusted input to build command strings is vulnerable. An adversary can leverage OS command injection in an application to elevate privileges, execute arbitrary commands and compromise the underlying operating system.
Parameter Injection (CAPEC-137)
An adversary manipulates the content of request parameters for the purpose of undermining the security of the target. Some parameter encodings use text characters as separators. For example, parameters in a HTTP GET message are encoded as name-value pairs separated by an ampersand (&). If an attacker can supply text strings that are used to fill in these parameters, then they can inject special characters used in the encoding scheme to add or modify parameters. For example, if user input is fed directly into an HTTP GET request and the user provides the value "myInput&new_param=myValue", then the input parameter is set to myInput, but a new parameter (new_param) is also added with a value of myValue. This can significantly change the meaning of the query that is processed by the server. Any encoding scheme where parameters are identified and separated by text characters is potentially vulnerable to this attack - the HTTP GET encoding used above is just one example.
Flash Parameter Injection (CAPEC-174)
An adversary takes advantage of improper data validation to inject malicious global parameters into a Flash file embedded within an HTML document. Flash files can leverage user-submitted data to configure the Flash document and access the embedding HTML document.
Using Meta-characters in E-mail Headers to Inject Malicious Payloads (CAPEC-41)
This type of attack involves an attacker leveraging meta-characters in email headers to inject improper behavior into email programs. Email software has become increasingly sophisticated and feature-rich. In addition, email applications are ubiquitous and connected directly to the Web making them ideal targets to launch and propagate attacks. As the user demand for new functionality in email applications grows, they become more like browsers with complex rendering and plug in routines. As more email functionality is included and abstracted from the user, this creates opportunities for attackers. Virtually all email applications do not list email header information by default, however the email header contains valuable attacker vectors for the attacker to exploit particularly if the behavior of the email client application is known. Meta-characters are hidden from the user, but can contain scripts, enumerations, probes, and other attacks against the user's system.
HTTP Parameter Pollution (HPP) (CAPEC-460)
An adversary adds duplicate HTTP GET/POST parameters by injecting query string delimiters. Via HPP it may be possible to override existing hardcoded HTTP parameters, modify the application behaviors, access and, potentially exploit, uncontrollable variables, and bypass input validation checkpoints and WAF rules.